N 723

		11	1 1
Seat No.	1 1	I I	1 1
Detto 1101	<u> </u>	 	

2022 III 26 1030 - N 723- MATHEMATICS (71) GEOMETRY-PART II (E)

(REVISED COURSE)

Time: 2 Hours

(Pages 11)

Max. Marks: 40

Note:—

- (i) All questions are compulsory.
- (ii) Use of calculator is not allowed.
- (iii) The numbers to the right of the questions indicate full marks.
- (iv) In case of MCQs [Q. No. 1(A)] only the first attempt will be evaluated and will be given credit.
- (v) For every MCQ, the correct alternative (A), (B), (C) or (D) with sub-question number is to be written as an answer.
- (vi) Draw proper figures for answers wherever necessary.
- (vii) The marks of construction should be clear. Do not erase them.
- (viii) Diagram is essential for writing the proof of the theorem.
- 1. (A) For each of the following sub-questions four alternative answers are given. Choose the correct alternative and write its alphabet:
 - (i) If \triangle ABC \triangle DEF and \angle A' = 48°, then \angle D =
 - (A) 48°
 - (B) 83°
 - (C) 49°
 - (D) 132°

P.T.O.

(ii)	AP is a tangent at A drawn to the circle with centre O fro			
	an external point P. OP = 12 cm and ∠OPA = 30°, then the radius			
	of a circle is			
	(A)	12 cm		
	(B)	$6\sqrt{3}$ cm		
	(C)	6 cm		
	(D)	$12\sqrt{3}$ cm		
(iii)	Seg AB is parallel to X-axis and co-ordinates of the point A are (1, 3), then the co-ordinates of the point B can be			
	(A)	(-3, 1)		
	(B)	(5, 1)		
	(C)	(3, 0)		
	(D)	(-5, 3)		
(iv)	The v	The value of 2tan 45° - 2sin 30° is		
	(A)	2		
	(B)	1		
	(C)	$\frac{1}{2}$		
	(D)	$\frac{1}{2}$ $\frac{3}{4}$		

(B) Solve the following sub-questions:

4

In \triangle ABC, \angle ABC = 90°, \angle BAC = \angle BCA = 45°. If \triangle C = $9\sqrt{2}$, then find the value of AB.

- (ii) Chord AB and chord CD of a circle with centre O are congruent. If $m(\text{arc AB}) = 120^{\circ}$, then find the m(arc CD).
- (iii) Find the Y-co-ordinate of the centroid of a triangle whose vertices are (4, -3), (7, 5) and (-2, 1).
- (iv) If $\sin\theta = \cos\theta$, then what will be the measure of angle θ ?

P.T.O.

2. (A) Complete the following activities and rewrite it (any two): 4

In the above figure, seg AC and seg BD intersect each other in point P. If $\frac{AP}{CP} = \frac{BP}{DP}$, then complete the following activity to prove Δ ABP ~ Δ CDP.

Activity: In A APB and A CDP

$$\frac{AP}{CP} = \frac{BP}{DP} \dots$$

∴ ∠APB ≅ ____ vertically opposite angles

https://www.maharashtrastudy.com

In the above figure, \square ABCD is a rectangle. If AB = 5, AC = 13, then complete the following activity to find BC.

Activity:

Δ ABC is triangle.

.. By Pythagoras theorem

$$AB^2 + BC^2 = AC^2$$

$$\therefore 25 + BC^2 = \boxed{}$$

$$\therefore \qquad \qquad BC^2 = \boxed{}$$

P.T.O.

(iii) Complete the following activity to prove:

$$\cot 0 + \tan 0 = \csc 0 \times \sec 0$$

Activity:

L.H.S. =
$$\cot \theta + \tan \theta$$

= $\frac{\cos \theta}{\sin \theta} + \frac{\Box}{\cos \theta}$
= $\frac{\Box + \sin^2 \theta}{\sin \theta \times \cos \theta}$
= $\frac{1}{\sin \theta} \times \frac{\Box}{\cos \theta}$ \therefore \Box
= $\frac{1}{\sin \theta} \times \frac{1}{\cos \theta}$

L.H.S. = R.H.S.

(B) Solve the following sub-questions (Any four):

(i) If \triangle ABC ~ \triangle PQR, AB : PQ = 4 : 5 and A(\triangle PQR) = 125 cm², then find A(\triangle ABC).

8

In the above figure, $m(\text{arc DXE}) = 105^{\circ}$, $m(\text{arc AYC}) = 47^{\circ}$, then find the measure of $\angle \text{DBE}$.

- (iii) Draw a circle of radius 3.2 cm and centre 'O'. Take any point P on it. Draw tangent to the circle through point P using the centre of the circle.
- (iv) If $\sin \theta = \frac{11}{61}$, then find the value of $\cos \theta$ using trigonometric identity.
- (v) In \triangle ABC, AB = 9 cm, BC = 40 cm, AC = 41 cm. State whether \triangle ABC is a right-angled triangle or not? Write reason.

3. (A) Complete the following activities and rewrite it (Any one): 3

In the above figure, chord PQ and chord RS intersect each other at point T. If \angle STQ = 58° and \angle PSR = 24°, then complete the following activity to verify: https://www.maharashtrastudy.com

$$\angle STQ = \frac{1}{2} [m(arc PR) + m(arc SQ)]$$

Activity:

In Δ PTS,

$$\angle SPQ = \angle STQ - \square$$
 : Exterior angle theorem

$$\therefore \frac{1}{2} [m(\text{arc PR}) + m(\text{arc QS})] = \boxed{\angle \dots} \dots \text{from (I)}$$
and (II)

(ii) Complete the following activity to find the co-ordinates of point P which divides seg AB in the ratio 3: 1 where A(4, -3) and B(8, 5)

Activity:

:. By section formula,

$$x = \frac{mx_2 + nx_1}{\boxed{}}, \quad y = \frac{\boxed{}}{m+n}$$

$$\therefore \quad x = \frac{3 \times 8 + 1 \times 4}{3+1}, \quad y = \frac{3 \times 5 + 1 \times (-3)}{3+1}$$

$$= \frac{\boxed{} + 4}{4} = \frac{\boxed{} -3}{4}$$

$$\therefore \quad x = \boxed{} \quad \therefore \quad y = \boxed{}$$

(B) Solve the following sub-questions (Any two):

 $\begin{array}{c} A \\ X \\ \end{array}$

In \triangle ABC, seg XY || side AC. If 2AX = 3BX and XY = 9, then find the value of AC.

6

- (ii) Prove that "Opposite angles of cyclic quadrilateral are supplementary."
- (iii) \triangle ABC \sim \triangle PQR. In \triangle ABC, AB = 5.4 cm, BC = 4.2 cm, AC = 6.0 cm, AB : PQ = 3 : 2, then construct \triangle ABC and \triangle PQR.
- (iv) Show that:

$$\frac{\tan A}{(1+\tan^2 A)^2} + \frac{\cot A}{(1+\cot^2 A)^2} = \sin A \times \cos A.$$

4. Solve the following sub-questions (Any two):

ABCD is a parallelogram. Point P is the midpoint of side CD seg BP intersects diagonal AC at point X, then prove that:

$$3AX = 2AC$$

https://www.maharashtrastudy.com

8

In the above figure, seg AB and seg AD are tangent segments drawn to a circle with centre C from exterior point A, then prove that:

$$\angle A = \frac{1}{2} [m(\text{arc BYD}) - m(\text{arc BXD})]$$

(iii) Find the co-ordinates of centroid of a triangle if points D(-7, 6), E(8, 5) and F(2, -2) are the mid-points of the sides of that triangle.

5. Solve the following sub-questions (Any one):

(i) If a and b are natural numbers and a > b. If $(a^2 + b^2)$, $(a^2 - b^2)$ and 2ab are the sides of the triangle, then prove that the triangle is right angled.

Find out two Pythagorean triplets by taking suitable values of a and b.

(ii) Construct two concentric circles with centre O with radii 3 cm and 5 cm. Construct tangent to a smaller circle from any point A on the larger circle. Measure and write the length of tangent segment. Calculate the length of tangent segment using Pythagoras theorem.